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FULL-SCALE WIND-TUNNEL INVESTIGATION OF THE
STATIC LONGITUDINAL AND LATERAL CHARACTERISTICS OF A
LIGHT SINGLE-ENGINE LOW-WING AIRPLANE

By James P. Shivers, Marvin P. Fink, and George M. Ware
Langley Research Center

SUMMARY

A wind-tunnel investigation has been conducted in the Langley full-scale tunnel to
determine the static longitudinal and lateral stability and control characteristics of a
light single-engine airplane, The investigation was made over an angle-of-attack range
of -4° to 22° at various angles of sideslip between 15° and -15° for various power and
flap settings. The power conditions were T'c =~ 0,03 which represents a cruise condi-
tion of about 70 percent power and Té =~ 0.23 which corresponds to a full power climb
condition (where T'C is thrust coefficient).

The investigation showed that the airplane has stick-fixed longitudinal stability for
angles of attack up to and through the stall for all configurations tested with the center of
gravity at 0.25 mean aerodynamic chord. Power generally had a small destabilizing
effect. The airplane is directionally stable and has positive effective dihedral through
the stall for all test conditions. The aileron and rudder effectiveness was maintained
through the stall and was powerful enough to trim out all airplane rolling and yawing
moments through the stall.

INTRODUCTION

For the past several years the Flight Research Center has been conducting a pro-
gram to evaluate the flying qualities of a number of general-aviation aircraft. The
results of these investigations have been reported in reference 1. As a part of the con-
tinuing investigation, one of the airplanes investigated in reference 1, a light twin-engine
configuration, was tested in the Langley full-scale tunnel, and the results given in refer-
ence 2. In addition, a single-engine version of the airplane of reference 2 was investi-
gated and the results are reported in reference 3. The present investigation was made
to determine the static longitudinal and lateral stability and control characteristics of
another single-engine airplane of about the same gross weight as the airplane of refer-
ence 3 but with different geometric characteristics and airfoil. The investigation was
made with various power and flap settings over a range of angle of attack from -40 to 220



and over a range of sideslip angle from -15% to 15°. The tests were made at a tunnel
speed of about 93 feet per second (28.3 meters per second) giving a Reynolds number
of approximately 3.37 X 106.

SYMBOLS

The stability-axis system used in the presentation of the data and the positive direc-
tion of forces, moments, and angles are shown in figure 1. The data are computed about
the moment center shown in figure 2 which is at 25 percent of the mean aerodynamic

chord.
b wing span, 33.38 feet (10.20 meters)
. . Drag
Cp drag coefficient, =
cL lift coefficient, %
Cy side-force coefficient, Side force
qS
C; rolling-moment coefficient, Rollmgsrsoment
q
Clﬁ lateral stability parameter (taken between +10° g), ik per degree
. R 8Cl

Cl()a aileron rolling-moment parameter, <55 Per degree
Cm pitching-moment coefficient, Pltchingsranoment

q
Cmge elevator effectiveness parameter, %%—m, per degree

e
-Z%El longitudinal stability parameter
; . . Yawing moment
Cn yawing-moment coefficient,
qSb
Cn 8 directional stability parameter (taken between +10° g), 88—%", per degree
Cnba aileron yawing-moment parameter, %gﬁ, per degree
a
. 9Cp

Cn 5r rudder effectiveness parameter, T per degree

r
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mean aerodynamic chord, 5.67 feet (1.73 meters)

horizontal tail incidence, positive trailing edge down, degrees
free-stream dynamic pressure, pounds per foot2 (newtons per meter?2)
wing area, 180 foot2 (16.70 meter2)

effective thrust (at « = 09),

Dragpropellers removed - PT@8propellers operating

thrust coefficient, L

qS
velocity, feet per second (meters per second)
stability axes
angle of attack of fuselage reference line, degrees

angle of sideslip, positive nose to left, degrees

total aileron deflection, positive right aileron down, 0, 1eft - Ga,right’
’
degrees

elevator deflection, positive trailing edge down, degrees
flap deflection, positive trailing edge down, degrees
rudder deflection, positive trailing edge left, degrees

AIRPLANE

The airplane tested was a light, single-engine, low-wing monoplane having a maxi-

mum take-off weight of 2750 1b (12250 N). The principal dimensions are given in fig-
ure 2 and the airplane mounted in the tunnel test section is shown in figure 3. The air-
plane had a wing span of 33.38 ft (10.20 m), a wing area of 180 ft2 (16.70 m2), an aspect
ratio of 6.19, and a mean aerodynamic chord of 5.67 ft (1.73 m). The airfoil section for
the wing was designated by the manufacturer as an NACA 4415R airfoil section at the
root and an NACA 6410R airfoil at the tip. The wing had 3.0° of geometric twist (the



wing tip had 3.0° less incidence than the wing root), had 7.50 of dihedral, and was at 20
positive incidence with respect to the fuselage reference line. The thrust axis was par-
allel to the reference line. The airplane had a standard three-control system. The hor-
izontal tail was of the stabilizer-elevator type with an elevator travel from 20° to -30°.
The stabilizer for this airplane is normally set at zero incidence, but for these tests, it
was set at -5° and +5° incidence. The aileron travel was from 20° to -30°, and the rud-
der travel was from -30° to 30°. The vertical stabilizer was offset 2° to the left of the
center line. The hinge line of the slotted trailing-edge flap was modified so that the flap
hinge axis was in line with the aileron hinge line. For this investigation, the main landing
gear was removed and the wheel wells covered with sheet metal. The nose gear was
always retracted. Power was provided by a 266-hp (198 kW) variable-frequency elec-
fric motor.

TESTS

The tests were made to determine the static longitudinal and lateral stability and
control characteristics of the airplane for several flight conditions. The airplane was
tested over an angle-of-attack range from -4° to 22° and over a sideslip range from -15°
to 15° for 0°, 20°, and 30° flap deflections. A range of elevator angle from 17.9° to -23.0°
was investigated at zero sideslip with -5° tail incidence and from 11.3° to -30° with 5° tail
incidence. The two tail incidence settings were tested to provide information for esti-
mating the average downwash angle at the tail. Rudder effectiveness was measured over
the sideslip range. References 2 and 3 showed that aileron effectiveness was not appre-
ciably affected by power, flap deflection, or sideslip. Consequently, in the present inves-
tigation, aileron effectiveness was measured only at zero sideslip and flap deflection for
low and high thrust coefficients T¢ of approximately 0.03 and 0.23 which represent a
cruise and a climb condition, respectively. A thrust coefficient of 0.20 would correspond
to 600 pounds (2.67 kN) of thrust at a flight speed of 80 mph (35.7632 m/sec) which would
be equivalent to approximately 200 hp (149 kW).

The test vehicle had a controllable pitch propeller on which blade angle and rota-
tional speed was controlled and indicated remotely. The blade angle and advance ratio
for a given thrust coefficient were determined and set for each test. However, a varia-
tion in instrumentation voltage which was not perceptible during the investigation resulted
in a variation in propeller blade angle from test to test and caused deviations from the
preselected thrust values. Once set, however, the blade angle remained constant over
~ the angle-of-attack range. The actual thrust coefficient for each individual test was
determined from data analysis and is indicated in the figures.



PRESENTATION OF DATA

The data from these tests have been corrected for airstream misalinement, buoy-
ancy effects, mounting strut tares, and wind-tunnel jet-boundary effects.

The data are presented in the following figures:

Figure

Longitudinal aerodynamic characteristics with propeller removed . . . . . . . 4
Longitudinal aerodynamic characteristics with propeller removed

and at low power with propelleron ., . . . . . . . . . . .. ... 5
Longitudinal aerodynamic characteristics with power and for flap

deflection, it =-5% . . . . . . .. ... e e e 6to8
Longitudinal aerodynamic characteristics with power and for flap

deflection, it =5° ......... e e e e e e e 9 to 11
Longitudinal aerodynamic characteristics with horizontal tail removed . . . . 12
Variation of pitching-moment coefficient with elevator deflection . ... ... 13 and 14
Lateral stability and control characteristics with power and for flap

deflection . , . . . ... ... ... e e e e e s e e e e e e . 15to 17
Lateral stability and control characteristics for aileron deflection. . . . . . . 18
Lateral stability and control characteristics for rudder deflection,

6=02 L L e e e e e e e e e e e e 19
Lateral stability and control characteristics for rudder deflection,

6,=20° . . . ... ... e e e e e e 20
Lateral stability and control characteristics for rudder deflection,

68=300 . . e e e e e e e e e e 21
Effect of power on longitudinal 'aerodynamic characteristics . . . . ... ... 22
Longitudinal stability . . .. .. .. e e et e e e e e e e e e e e 23
Horizontal tail control power ... . . . e e e et e e e e e e e e e e e s e e 24
Effective dihedral and directional stability characteristics . , . ... .. .. . 25
Aileron effectiveness ., ., . . . ... .. 26
Rudder effectiveness . . .. .. ... .. .. et e e s e e e e e e e e e e e 27
Comparison of rolling- and yawing-moment coefficients for various

thrust coefficients and flap deflections . . . . . . . . . ¢ v v v v v v v v .. 28
Control capability for overcoming lateral moments . . . ... .. ... .... 29

RESULTS AND DISCUSSION

The basic data obtained during the wind-tunnel investigation are presented in fig-
ures 4 to 21 without analysis., Summary plots have been prepared from some of these



data to illustrate the general static stability and control characteristics of the airplane.
Only the summary plots are discussed.

Longitudinal Aerodynamic Characteristics

The longitudinal aerodynamic characteristics of the airplane with various power
conditions are presented in figure 22 for flap deflections of 0°, 20°, and 30°. As might
be expected, increasing power results in an increase in lift-curve slope and maximum
lift coefficient because of the increased slipstream velocity over the wing.

The pitching-moment curves shown in figure 22 are virtually linear up to the stall
and then exhibit a nose-down pitching moment at higher angles of attack. For a given
flap deflection, increasing power generally has little effect on the pitching-moment char-
acteristics except for a small trim change. Illustrated in figure 23 is the variation in
static margin -3Cpy /BCL with lift coefficient for the various flap deflections and thrust
coefficients. These data are a measure of the stick-fixed stability and show that power
is slightly destabilizing.

The variation of elevator effectiveness with angle of attack at T'c = 0,03 and 0.23
is presented in figure 24 for flap deflections of 0°, 20°, and 30°. These data show that
the effectiveness remained nearly constant over the angle-of-attack range and that it was
reduced slightly by flap deflection.

Lateral Stability and Control Characteristics

The variation of the effective-dihedral parameter Clﬁ and directional stability
parameter Cp 3 with angle of attack is shown in figure 25 for the several flap deflec-
tions and thrust coefficients., The data show that the airplane has positive effective dihe-
dral (- CZB) in all conditions, The usual general reduction in the effective dihedral with
increasing angle of attack up to about the stall angle took place except at low thrust coef-
ficient and zero flap deflection. The effective dihedral was greatly reduced when the
flaps were deflected.

The data of figure 25 also show that the airplane is directionally stable for all test
conditions although there is some decrease in directional stability at the higher angles of
attack and that deflecting the flaps causes a small reduction in stability with power on.
Power caused an increase in the directional stability as would be expected because of the
increase in dynamic pressure at the tail.

The variation of the aileron control characteristics Cj5, and Cpg, with angle of
attack is presented in figure 26 for flap deflections of 0° and-30° and a low thrust coeffi-
cient. These data show that, in general, the rolling moment remains at a fairly constant
level throughout the angle-of-attack range and is relatively unaffected by flap deflection,



However, the variation of the yawing moments with angle of attack show that the ailerons
produce adverse yaw and the magnitude of the yawing moment increases with increasing
angle of attack.

The variation of rudder effectiveness with angle of attack is presented in figure 27
for a low and a high thrust coefficient and for flap deflections of 0°, 20°, and 30°. These
data show that rudder effectiveness is maintained throughout the angle-of-attack range
for all test conditions, and the effectiveness is appreciably increased with an increase in
power because of the increased dynamic pressure at the tail caused by the slipstream.

The basic lateral trim characteristics of the airplane, as shown by the variation of
the lateral coefficients C; and Cp with angle of attack for 0° sideslip, are presented
in figure 28 for the various flap deflections and thrust coefficients. The data show that
below the stall there is an out-of-trim positive rolling moment that decreases with
increasing angle of attack until, near the stall, the rolling moment becomes negative.
These rolling moments, however, are not unusually large. It may be noted in figure 28
that power reduced the out-of-trim rolling moments that were present at the low power
condition., This is opposite to the effect of power on the rolling moments of the airplane
of reference 3. This difference may be due, in part, to the thrust axis of the airplane of
reference 3 being offset 3° to the right and the vertical stabilizer of the airplane of the
present investigation being offset 2° to the left. The data also show that the yawing
moment is nearly zero at the low thrust setting since the vertical stabilizer is offset to
trim the airplane near the cruise thrust coefficient (T'c R 0.03). The action of the slip-
stream on the vertical tail with increased thrust coefficient causes a negative yawing
moment as might be expected.

An attempt has been made to determine whether the controls are powerful enough to
overcome the asymmetric moments near the stall, and the results of the analysis are pre-
sented in figure 29, In this figure are plotted the variation of the rolling and yawing
moments with angle of attack at 0° sideslip for Té = 0.03 and o6¢= 30°. Added to these
curves are the moments available from full aileron and rudder deflection at &f = 0°
(including the adverse yaw of the ailerons and the roll due to rudder deflection). These
data show that, based on static wind-tunnel results, the rolling and yawing moments avail-
able from aileron and rudder are more than adequate to overcome the out-of-trim
moments of the airplane,

CONCLUSIONS

A full-scale wind-tunnel investigation has been made to determine the static longi-
tudinal and lateral stability and control characteristics of a second single-engine airplane.
The following conclusions were drawn from the results of the investigation:



1. The airplane has stick-fixed longitudinal stability through the stall for all con-
figurations tested with the center of gravity at 0.25 mean aerodynamic chord. Power
generally has a small destabilizing effect but the airplane would be statically stable for
all test conditions.

2. The airplane is directionally stable and has positive effective dihedral through
the stall for all test conditions.

3. Aileron and rudder effectiveness is maintained through the stall.

4, Aileron and rudder controls are powerful enough to trim out all airplane rolling
and yawing moments through the stall.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., April 27, 1970.
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Figure 26.- Variation of aileron rolling- and yawing-moment parameters with angle of attack for several flap deflections. T = 0.03.
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Figure 29.- Control capability for overcoming fateral moment. Tc = 0.03; & = 300, = 0°,
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